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In this talk I would like to give an overview of the central areas of quark matter physics: 
Relativistic Heavy Ion Collisions and Quantum Chromodynamics. 

We will begin with the theme of v a c u u m  as a condensate  and then review RHIC 
physics and QCD, summarizing the present knowledge of phase transitions and QCD phase 
diagrams, with particular emphasis on the present theoretical limitations. Finally we will 
present a new theoretical approach which may remove some of these limitations. Following 
is an outline of the talk. 
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1. T W O  P U Z Z L E S  OF M O D E R N  P H Y S I C S  

The status of our present theoretical structure can be summarized as follows: 

Q C D  (strong interaction) 
SU(2) x U(1) Theory  (electroweak) 
Genera l  R e l a t i v i t y  (gravitation). 

However, in order to apply these theories to the real world, we need a set of about 18 
parameters, all of unknown origins. Thus, this theoretical edifice cannot be considered 
complete. 

The two outstanding puzzles that confront us today are: 

i) M iss ing  symmetr ies  - All present theories are based on symmetry, but 
most symmetry quantum numbers are not conserved. 

i i )  Unseen quarks - All hadrons are made of quarks; yet, no individual quark 
can be seen. 

These two puzzles have been with us for several decades, beginning with parity nonconser- 
vation in the fifties and C P  and time reversal violations in the sixties. They are perhaps 
of an equal profundity as the puzzles which faced our predecessors around the turn of the 
century. 

1.1. Historical Remark  

At the end of the last century, there were also two physics puzzles: 
1. No absolute inertial frame (Michelson-Morley Experiment 1887), 
2. Wave-particle duality (Planck's formula 1900). 

These two seemingly esoteric problems struck classical physics at its very foundation. The 
first became the basis for Einstein's special theory of relativity and the second led to quan- 
tum mechanics. In this century, all the modern scientific and technological developments-- 
nuclear energy, atomic physics, molecular s~ructurc, lasers, x-ray technology, semi- 
conductors, superconductors, supercomputers--only exist because we have relativity and 
quantum mechanics. To humanity and to our understanding of nature, these are all- 
encompassing. 

1.2. Vacuum As A Condensate  

The puzzle of missing symmetries implies the existence of an entirely new class of 
fundamental forces, the one that is responsible for symmetry breaking. Of this new force, 
we know only of its existence, and very little else. Since the masses of particles break 
many of these symmetries, an understanding of the symmetry-breaking forces will lead to 
a comprehension of the origin of the masses of all known particles. One of the promising 
directions is the spontaneous symmetry-breaking mechanism 1 in which one assumes that 
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the physical laws remain symmetric, but the physical vacuum is not. If so, then the solution 
of this puzzle is closely connected to the structure of the physical vacuum; the excitations 
of the physical vacuum may lead to the discovery of Higgs-type mesons. The vacuum, 
though Lorentz invariant (therefore not aether), can be full of complexity. 

In some textbooks, the second puzzle is often "explained" by using the analogy of the 
magnet. A magnet has two poles, north and south. Yet, if one breaks a bar magnet in 
two, each half becomes a complete magnet with two poles. By splitting a magnet open 
one will never find a single pole (magnetic monopole). However, in our usual description, a 
magnetic monopole can be considered as either a fictitious object (and therefore unseeable) 
or a real object but with exceedingly heavy mass beyond our present energy range (and 
therefore not yet seen). In the case of quarks, we believe them to be real physical objects 
and of relatively low masses (except the top quark); furthermore, their interaction becomes 
extremely weak at high energy. If so, why don't we ever see free quarks? This is, then, the 
real puzzle. 

The current explanation of the quark confinement puzzle is again to invoke the vacuum. 
We assume the QCD vacuum to be a condensate of gluon pairs and quark-antiquark pairs 
so that it is a perfect color dia-electric 2 (i.e., color dielectric constant m = 0). This is in 
analogy to the description of a superconductor as a condensate of electron pairs in BCS 
theory, which results in making the superconductor a perfect dia-magnet (with magnetic 
susceptibility # = 0). When we switch from QED to QCD we replace the magnetic field 

by the color electric field Ecolor, the superconductor by the QCD vacuum, and the 
QED vacuum by the interior of the hadron. As shown in Figure 1, the roles of the inside 
and the outside are interchanged. Just as the magnetic field is expelled outward from the 
superconductor, the color electric field is pushed into the hadron by the QCD vacuum, and 
that leads to color confinement, or the formation of hadrons (mesons, nucleons and other 
baryons). This situation is summarized in Table 1. 

QED superconductivity 
as a perfect dia-magnet 

QCD vacuum 
as a perfect color dia-electric 

J~  ~ ~ J~color 

~inside ~ 0 ~ ~ /~acuum m_ 0 

~vacuum ~ I ~ ~ /~inside = 1 

inside ~ , outside 

outside ~ , inside 

Tab le  1. Analogies between superconductivity and the QCD vacuum. 
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Figure 1. Superconductivity in QED vs. quark confinement in QCD. 
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Figure 2. Vacuum excitation through relativistic heavy ion collisions. 
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QCD vacuum is, of course, Lorentz invariant. The product of its color dielectric 
constant times its color magnetic susceptibility is one, so that the velocity of light remains 
c. Thus, the hypothesis that the QCD vacuum is a perfect color dia-electric implies an 
infinite color magnetic susceptibility. 

2. R H I C  P H Y S I C S  AND QCD 

2.1. How To Exci te  the  Vacuum? 

In order to explore physics in this fundamental area, relativistic heavy ion collisions 
offer an important new direction. 3 The basic idea is to collide heavy ions, say gold on gold, 
at an ultra-relativistic region. Before the collision, the vacuum between the ions is the usual 
physical vacuum; at a sufficiently high energy, after the collision almost all of the baryon 
numbers are in the forward and backward regions (in the center-of-mass system). The 
central region is essentially free of baryons and, for a short duration, it is of a much higher 
energy density than the physical vacuum. Therefore, the central region could become the 
excited vacuum (Figure 2). 

To realize this possibility, we need RHIC, the 100 GeV x 100 GeV (per nucleon) 
relativistic heavy ion collider at the Brookhaven National Laboratory, to explore the QCD 
vacuum. 

2.2. Phase  Diagram 

Without any sophisticated theoretical analysis, we expect the QCD phase diagram to 
be of the form given by Figure 3, in which the ordinate is the thermal energy kT and the 
abscissa is baryon number density in units of that in the normal nucleus. At AGS (11.6 
GeV/nucleon) and at SPS (160 GeV/ nucleon) there are only fixed-target experiments. 
Consequently the center-of-mass energy is not likely to be high enough to create the quark 
gluon plasma. 

Figure 4 gives the phase diagram 4 for pure lattice gauge QCD. The ordinate is entropy 
density/T 3 and the abscissa is kT. One finds a first-order phase transition at about 150 
MeV thermal energy, leading from nearly zero entropy density to eight times that of a 
photon gas. (In pure gauge QCD there are only gluons which have eight color and two 
helicity states). 

A realistic QCD calculation requires quarks. Figure 5(a) gives the 19g0 version of 
the QCD phase diagram s. The abscissa denotes the mass of u, d quarks times the lattice 
spacing £, and the ordinate is the mass of s in the same units. There are five points, 
marked A,B,  C ,D and E .  Point E refers to mu,d = ms = oo; i.e., pure gauge QCD. 
As mentioned earlier, the result for pure gauge shows a first-order phase transition. Points 
E,C and D all lie on the upper boundary of the diagram (ms = o0). As of 1990, using a 
three-dimensional lattice of 163 and a temperature (Euclidean time) division NT = 4, the 
Columbia Group s found the result to be not a first-order phase transition. The extrapolation 
to mind to 0 should lead to a second-order phase transition. On the other hand, point A 
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Figure  4. Phase transition (pure gauge QCD) 



18c T.D. Lee / Nuclear Physics A590 (1995) 11c-28c 

(3O 

m s  

0.1 

.025 

.01 

two pure 
flovors " ~  gouge 

= =C i : -  D second - f i rst -  
/ 0  order 

I B  

-order :  - _~ 

I I 

0 .01 .025 O9 

one 
flovor 
/ 

Figure 5(a). Finite-temperature QCD phase transition as a function of m~,d~. 
and ms ~ on a 16 3 X 4 lattice. 
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the first-order phase transition disappears. 
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F i g u r e  6(a ) .  The cold start evolution at • = 5.48 for two light-flavor quarks. 
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F i g u r e  6(b ) .  The hot start evolution at /~ = 5.48 for two light-flavor quarks. 
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Figure  7(a).  The cold start evolution at /3 = 5.48 for two light-flavor quarks. 
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Figure  7(b) .  The hot start evolution at /~ = 5.48 for two light-flavor quarks. 
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Figture 8. Entropy Density S vs. temperature for two light-flavor quarks 
with 163 x 4 lattice (m~ = ma = 0.01 / ~). 

CONTINUUM QCD 

ACTION A =- ¼ f F#vF#vd4X 

( F#v UNBOUNDED) 
NONCOMPACT A 

Perturbative Series 
and Renormal~.ation Group 

Difficulties with 

confinement 
hadron spectra 
hadron distributions in 

dynamical processes 

LATTICE QCD 

A = ~ ½ trace (1- UQ ) ,  c.c. 

( Uo BOUNDED) 
COMPACT A 

Spurious Fermion Solutions 
and their removal 

Difficulties with 

pion mass 
dynamical processes 

Table 2. Present Status of QCD 
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with m~,,d = ms = .025/£ shows a first-order phase transition, but when ms increases to 
0.1/£ at point B the first-order phase transition disappears, as shown in Figure 5(b). The 
boundary of the first-order region in Figure 5(a) is drawn freely. 

Since the Columbia group under Norman Christ completed the 250-node dedicated 
parallel processor at the end of 1989, much work has been done to see how certain these 
conclusions are. By doubling the temperature slices from 4 to 8, and applying the 163 
lattice to the case of two light-flavor quarks (and an infinite ms ) the Columbia group first 
found a rather different conclusion from the ]gg0 phase diagram. As shown in Figures 6(a) 
and 6(b), the new results suggest a first-order transition 6 instead of second-order, which 
was obtained previously. But more surprises were yet to come. 

Soon after, further intensive effort was made, maintaining the temperature slices at 
eight but increasing the spatial dimensions from 163 to 323 . Unexpectedly, what looked 
like an indication of the first-order phase transition disappeared. The newer results 7, in 
Figures 7(a) and 7(b), show that the second-order phase transition for two light-flavor 
quarks is still the correct one. In other words, from 1990 to 1994 the theoretical evidence 
has turned 360 °, from second-order phase transitions for two light-flavor quarks to first- 
order and then back to second-order. This shows how difficult these calculations are. 

The Christ-Mawhinney group then concentrated on the physical manifestation of these 
differences, first order or second order, from an observational point of view. Extensive runs 
over different temperatures, concentrating on the two light-flavor quarks with 163 x (N~ = 
4), were made. The result still shows a second-order phase transition. However, as displayed 
in Figure 8, in terms of the physical observables entropy vs. temperature 8, it would be 
extremely difficult to tell experimentally whether we have a first-order or second-order 
phase transition. 

2.3. P r e s e n t  Theo re t i c a l  L imi t a t ions  

Since QCD is the foundation of quark matter physics, it is important for us to examine 
critically our present understanding. Table 2 summarizes the basic actions of continuum and 
lattice QCD and the difficulties that we are facing. We emphasize that the present compact 
form 9 of lattice QCD is intrinsically different from the noncompact form of continuum QCD, 
except in the weak-coupling limit or when the lattice size equals zero. Both limits are difficult 
to achieve. In addition, for lattice QCD there is the problem of spurious fermion solutions, 
as will be discussed below. 

3. A N E W  T H E O R E T I C A L  A P P R O A C H  

It is well known that the Dirac equation on a discrete lattice in D dimension has 2 D 
degenerate solutions. The usual method of removing these spurious solutions encounters 
difficulties with chiral symmetry when the lattice spacing e ~ 0, as demonstrated by the 
persistent problem of pion and kaon masses. On the other hand, we recall that in any 
crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet 
there is not a single physical result that has ever been entangled with a spurious fermion 
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solution. Therefore it should not be difficult to eliminate these unphysical elements. 

On a discrete lattice, particles hop from point to point, whereas in a real crystal the 
lattice structure is embedded in a continuum and electrons move continuously from lattice 
cell to lattice cell. In a discrete system, the lattice functions are defined only on individual 
points (or links, as in the case of gauge fields). However, in a crystal the electron state 
vector is represented by the Bloch wave functions which are continuous functions in ~', and 
herein lies one of the essential differences. 

In this new approach we shall expand the field operator in terms of a suitably chosen 
complete set of orthonormal Bloch functions 

{ f,..-.Cg I ~') } (1) 
where /~ denotes the Bloch wave number restricted to the Brillouin zone, and n labels 
the different bands. Thus, e - d R ' ¢ f , , ( R I F )  has the periodicity of the lattice. The lattice 
approximation is then derived by either restricting it to only one band (say, n = 0), or to 
a few appropriately defined low-lying bands. Since the inclusion of all bands is the original 
continuum problem, there is a natural connection between the lattice and the continuum 
in this method. By including the contributions due to more and more bands, one can 
systematically arrive at the exact continuum solution from the lattice approximation, as 
we shall see. There is a large degree of freedom in choosing the Bloch functions (1.1), as 
the original continuum theory has no crystal structure. These extra degrees of freedom are 
analogous to gauge fixing; the final answer to the continuum problem is independent of the 
particular choice of Bloch functions. 

3.1. Spur ious  La t t i ce  Fermion  Solut ions  

To see the origin of the spurious lattice fermion solutions, we may consider the re~ 
placement of the continuum equation - i a ~ b / O x  = p~ by its discrete form in one space 
dimension: 

/ 
2-t (¢j+z - Cj-z) = PL Cj (2) 

where Cj is the value of ¢ at the jth site. The above equation can also be derived by 
setting the derivative 0 / 0 ~ j  of the discrete bilinear form 

1 _ i Z ¢ ~ ( ¢ j + z  _ Cj)/g-I- h.c.] (3) 
B L -- -~ J 

to be zero at a constant ~-~,j ~ Cj .  The lattice-eigenvalue PL is given by 

1 
PL ---- ~ sinKg (4) 

where 
Kg -- 8 (5) 



24c I.D. Lee / Nuclear Physics ,4590 (1995) 11c-28c 

is between - I t  and ~r. The spurious solution refers to the zero (pL(O) = 0) at 0 = ~r 
(which is the same as 0 = -~r).  This is a special case of the Nielsen-Ninomiya theorem1°: 
For any continuous and periodic function pL(8), if as 8 --* 0 pz,(O) --~ K = 6 /E ,  then 
because of the periodicity pL(O) = pL(O + 21r), there must be another zero of pL(0) for 
6 between 0 and 2~r. For a D-dimension cubic lattice, the corresponding wave function 
is a product function, the number of spurious solutions becomes 2 D . 

3 . 2 .  El imina t ion  of Spur ious  Lat t ice  Fermion S o l u t i o n s  zl 

We expand the continuum wave function ¢(x) in terms of (1), in which the zeroth 
band (n = 0) is simply the linear interpolation of the discrete values { Cj } ; i.e., in the 
zeroth-band approximation 

where 

¢(~) = ~ Cj n ( :  - J0  (6) 
J 

for Ixl<e 
t 0  otherwise. 

Thus, at x = jg, ¢(x) = Cj .  Substitute (6) into the continuum bi-linear form 

B ( ¢ ( x ) ) - - i / ¢ ( x ) t ~ - - d x .  

Setting OB/0¢5 = 0 at a constant f ¢?¢ do:, we find 

(7) 

~ oc d °j 

with 0 given by (5). Correspondingly, the zeroth-band Bloch function is 

3 ~ e ' ° ~  a(x - je) 
f o ( K I x )  = N£(2 +cosO) . 

3 

(8) 

where N is the total number of lattice sites. It is not difficult to construct from f0 (K I x) 
and the Fourier series a complete set of Bloch functions (1), which satisfy 

Nl 

o f, J K I x ) *  f,~,(K' lx)dx = 6.,v6KK,. (9) 

Let 
0 

/~. = - i  f . ( K I x ) *  ~ A ( K I x )  dx. (10) 

We find for n = 0 
3sin 8 

~o - 2 + cos8 (11) 
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F igure  9. The dash-dot line gives ~o = 3s in0 / (2  + cost) vs 0 = K t  and the 
dashed lines denote 8-1 and 8z defined by (10). The solid lines are the continuum 
free-particle spectrum pt = K t  % 21r m vs 0, with m = 0 and +1.  

which, like (4), has a spurious zero solution at 0 = ~r. 

If we substitute the full expansion 

¢(x) = ~ ~ q , . , ( K )  f , ( K I z )  (12) 

n k 

into (7), then ~ B / 6 ¢ ( x ) =  0 at a constant f C t C d x  gives - i O ¢ / 8 x  = p x  where 

2~r m 
p = K +  T (13) 

with K given by (5) and m =  . . , -1 ,0 ,1 ,  .-. 

In Figure 9, the abscissa is 8 / r  = K t / I r ,  the solid line gives the exact continuum 
value pt/~r and the different segments correspond to m = -1 ,0 ,  1. The dashed line 
segments are the corresponding 8,~/r, defined by (10). For I n l > 1, each 8,~ deviates 
from the exact continuum result (13) within < 1%. For I n l  < 1, we see that ~ and 
8-z  are both 0 at 0 = ~r ; likewise ~o and 81 are both 0 at 0 = -~r. Thus, the spurious 
solutions also extend to n = -I-1 bands. This additional unwanted degeneracy makes it 
easy to remove all spurious solutions, as we shall see. 
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Because fo(K [z)  and f l (K [z)  are not eigenfunctions of -iO / Or., the degeneracy 
between /~0 and /~-z at 0 = r can be removed by considering the off-diagonal elements 
of - iO/Ox. At 0 : lr - e where e is a positive infinitesimal, we may consider only two 
bands, n --- 0 and - 1 ;  in this subspace the operator -iO/Ox becomes the following 
2 x 2 matrix: 

As e --* O, its eigenvalues are 

+ -¢~6 /2  = +1.006 x 7 r / t .  (Is) 

Similar considerations apply to 0 = -Tr by taking into account the coupling between n --- 0 
and n = 1 band. Thus, by taking into account only n = 0 and 4-1, we have removed all 
spurious zero-mode solutions and, in addition, the result differs from the exact continuum 
value by less than a few tenths of a percent for the entire range. 

3.3. N o n c o m p a c t  L a t t i c e  Q C D  

In order to extend the above considerations to QCD we have to construct an ap- 
propriate complete set of Bloch wave functions that is compatible with the gauge-fixing 
condition. Once that is done, the restriction to the 0 th band ( n  = 0) gives a noncompact 
formulation t2 of lattice QCD. The exact continuum theory can be reached through the 
inclusion of all n = 0 and n ~ 0 bands, without requiring the lattice size 2 -~ 0. This 
makes it possible, at a nonzero 2, for the lattice coupling 9e to act as the renormalized 
continuum coupling. All physical results in the continuum are, of course, independent of 
2. We hope, with this new formulation, it may be possible to handle the low-lying meson 
masses as well as dynamical RHIC processes in the future. 

3.4, L o o k i n g  A h e a d  

We are now at the beginning of 1995, and soon it will be the end of the century. We 
may ask what will be the legacy that we give to the next generation in the next century? 
The physicists at the end of the nineteenth century had a glimpse of a new vista: the 
existence of exciting and unexplored fundamental areas. Today we are confronted with two 
similarly profound puzzles of modern physics. 

Through RHIC we may be able to alter the physical vacuum. If the vacuum is indeed 
the underlying cause for the two puzzles of missing symmetry and quark confinement in 
the microscopic world of particle physics, it must also have been actively responsive to 
the macroscopic distribution of matter and energy in the universe. Because the vacuum is 
everywhere and forever these two, the micro and the macro, have to be linked. Neither can 
be considered a separate entity. 
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